Polymer(Korea), Vol.40, No.3, 421-428, May, 2016
메타크릴레이트기가 접목된 실리카 나노입자를 포함하는 자외선 경화 우레탄 아크릴레이트 나노복합체의 기계적 성질
Mechanical Properties of UV-cured Urethane Acrylate Nanocomposite with Methacrylate-grafted Silica Nanoparticles
E-mail:
초록
본 연구에서는 (3-trimethoxysilylpropyl)diethylenetriamine(TPDT)으로 실리카 표면에 N-H기를 도입하여 Michael 부가 반응이 가능한 3-(acryloyloxy)-2-hydroxypropylmethacrylate(AHM)과 반응시킴으로써 methacrylate기를 도입하였다. 또한 순수 실리카와 3-methacryloxypropyltrimethoxysilane(MPTMS)만으로 개질된 실리카를 충전제로 사용하여 urethane acrylate계 수지와 광중합법으로 나노복합체를 제조하였다. UV 수지 중합체와 순수 실리카, MPTMS로 개질된 실리카 및 TPDT/AHM으로 개질된 실리카를 각각 0.5 wt% 포함하는 나노복합체들의 탄성률 값이 386.6, 433.6, 462.4 및 517.6MPa로 TPDT/AHM으로 개질된 실리카 나노복합체의 탄성률이 가장 우수함을 확인하였다.
In this study, we prepared silica nanoparticles with methacrylate groups on their surface by two-step modification process. Silica particles were first silanized with (3-trimethoxysilylpropyl)diethylenetriamine (TPDT), after that Michael addition reaction was performed between N-H groups on the TPDT modified silica surface with acrylate groups of 3-(acryloyloxy)-2-hydroxypropylmethacrylate (AHM). We also used pristine silica and 3-methacryloxypropyltrimethoxysilane (MPTMS) modified silica as fillers to make nanocomposites with urethane acrylate resin. We studied effects of above mentioned silica types on the mechanical properties of UV-cured nanocomposites. We found Young’s modulus values of UV cured resin, nanocomposites with 0.5 wt% pristine silica, with 0.5 wt% MPTMS modified silica and with 0.5 wt% TPDT/AHM modified silica were 386.6, 433.6, 462.4 and 517.6 MPa, respectively. The highest modulus was found in the nanocomposite of 0.5 wt% TPDT/AHM modified silica.
- Do HS, Kim DJ, Kim HJ, J. Adhes. Interf., 4, 41 (2003)
- Oh SA, Park KB, Park CI, Bae W, Clean Technol., 1, 19 (2006)
- Yoo JW, Kim DS, Polym. Korea, 23(3), 376 (1999)
- Vansant EF, Van Der Voort P, Vranchen KC, Characterization and Chemical Modification of the Silica Surface, Elsevier, Amsterdam, 1995.
- Senani SM, Bonhomme C, Ribot F, Babonneau F, J. Sol-Gel Sci. Technol., 50, 152 (2009)
- Halvorson RH, Erickson RL, Davidson CL, Dent. Mater., 19, 327 (2003)
- Song SK, Kim JH, Hwang KS, Ha KR, Korean Chem. Eng. Res., 49(2), 181 (2011)
- Lee S, Ha K, Korean J. Chem. Eng., submitted, 2016.
- ASTM D 638. Standard test method for tensile properties of plastics (2003).
- Innocenzi P, Brusatin G, J. Non-Cryst. Solids, 333, 137 (2004)
- Ek S, Iiskola EI, Niinisto L, J. Phys. Chem. B, 108(28), 9650 (2004)
- Kurth DG, Bein T, Langmuir, 11(8), 3061 (1995)
- Lee S, Ha KR, Polym. Korea, 39(2), 300 (2015)
- Mayo DW, Miller FA, Hannah RW, Course Notes on the Interpretation of Infrared and Raman Spectra, John Wiley & Sons, Inc., Hoboken, New Jersey, Chap. 7 (2004).
- Marrone M, Montanari T, Busca G, Conzatti L, Costa G, Castellano M, Turturro A, J. Phys. Chem. B, 108(11), 3563 (2004)
- Stansbury JW, Dickens SH, Dent. Mater., 17, 71 (2001)
- Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)
- Yoon JY, Kim JH, Kim TH, Elast. Compos., 44, 34 (2009)
- Xu XM, Li BJ, Lu HM, Zhang ZJ, Wang HG, J. Appl. Polym. Sci., 107(3), 2007 (2008)
- Park SC, Kim HG, Min KE, Polym. Korea, 37(1), 100 (2013)
- Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)