화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.3, 421-428, May, 2016
메타크릴레이트기가 접목된 실리카 나노입자를 포함하는 자외선 경화 우레탄 아크릴레이트 나노복합체의 기계적 성질
Mechanical Properties of UV-cured Urethane Acrylate Nanocomposite with Methacrylate-grafted Silica Nanoparticles
E-mail:
초록
본 연구에서는 (3-trimethoxysilylpropyl)diethylenetriamine(TPDT)으로 실리카 표면에 N-H기를 도입하여 Michael 부가 반응이 가능한 3-(acryloyloxy)-2-hydroxypropylmethacrylate(AHM)과 반응시킴으로써 methacrylate기를 도입하였다. 또한 순수 실리카와 3-methacryloxypropyltrimethoxysilane(MPTMS)만으로 개질된 실리카를 충전제로 사용하여 urethane acrylate계 수지와 광중합법으로 나노복합체를 제조하였다. UV 수지 중합체와 순수 실리카, MPTMS로 개질된 실리카 및 TPDT/AHM으로 개질된 실리카를 각각 0.5 wt% 포함하는 나노복합체들의 탄성률 값이 386.6, 433.6, 462.4 및 517.6MPa로 TPDT/AHM으로 개질된 실리카 나노복합체의 탄성률이 가장 우수함을 확인하였다.
In this study, we prepared silica nanoparticles with methacrylate groups on their surface by two-step modification process. Silica particles were first silanized with (3-trimethoxysilylpropyl)diethylenetriamine (TPDT), after that Michael addition reaction was performed between N-H groups on the TPDT modified silica surface with acrylate groups of 3-(acryloyloxy)-2-hydroxypropylmethacrylate (AHM). We also used pristine silica and 3-methacryloxypropyltrimethoxysilane (MPTMS) modified silica as fillers to make nanocomposites with urethane acrylate resin. We studied effects of above mentioned silica types on the mechanical properties of UV-cured nanocomposites. We found Young’s modulus values of UV cured resin, nanocomposites with 0.5 wt% pristine silica, with 0.5 wt% MPTMS modified silica and with 0.5 wt% TPDT/AHM modified silica were 386.6, 433.6, 462.4 and 517.6 MPa, respectively. The highest modulus was found in the nanocomposite of 0.5 wt% TPDT/AHM modified silica.
  1. Do HS, Kim DJ, Kim HJ, J. Adhes. Interf., 4, 41 (2003)
  2. Oh SA, Park KB, Park CI, Bae W, Clean Technol., 1, 19 (2006)
  3. Yoo JW, Kim DS, Polym. Korea, 23(3), 376 (1999)
  4. Vansant EF, Van Der Voort P, Vranchen KC, Characterization and Chemical Modification of the Silica Surface, Elsevier, Amsterdam, 1995.
  5. Senani SM, Bonhomme C, Ribot F, Babonneau F, J. Sol-Gel Sci. Technol., 50, 152 (2009)
  6. Halvorson RH, Erickson RL, Davidson CL, Dent. Mater., 19, 327 (2003)
  7. Song SK, Kim JH, Hwang KS, Ha KR, Korean Chem. Eng. Res., 49(2), 181 (2011)
  8. Lee S, Ha K, Korean J. Chem. Eng., submitted, 2016.
  9. ASTM D 638. Standard test method for tensile properties of plastics (2003).
  10. Innocenzi P, Brusatin G, J. Non-Cryst. Solids, 333, 137 (2004)
  11. Ek S, Iiskola EI, Niinisto L, J. Phys. Chem. B, 108(28), 9650 (2004)
  12. Kurth DG, Bein T, Langmuir, 11(8), 3061 (1995)
  13. Lee S, Ha KR, Polym. Korea, 39(2), 300 (2015)
  14. Mayo DW, Miller FA, Hannah RW, Course Notes on the Interpretation of Infrared and Raman Spectra, John Wiley & Sons, Inc., Hoboken, New Jersey, Chap. 7 (2004).
  15. Marrone M, Montanari T, Busca G, Conzatti L, Costa G, Castellano M, Turturro A, J. Phys. Chem. B, 108(11), 3563 (2004)
  16. Stansbury JW, Dickens SH, Dent. Mater., 17, 71 (2001)
  17. Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)
  18. Yoon JY, Kim JH, Kim TH, Elast. Compos., 44, 34 (2009)
  19. Xu XM, Li BJ, Lu HM, Zhang ZJ, Wang HG, J. Appl. Polym. Sci., 107(3), 2007 (2008)
  20. Park SC, Kim HG, Min KE, Polym. Korea, 37(1), 100 (2013)
  21. Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)