화학공학소재연구정보센터
Applied Surface Science, Vol.370, 218-228, 2016
Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation
In this paper, we used plasma electrolytic oxidation (PEO) of titanium in water solution containing 10 g/L Na3PO4 center dot 12H(2)O + 2 g/L Eu2O3 powder for preparation of TiO2:Eu3+ coatings. The surfaces of obtained coatings exhibit a typical PEO porous structure. The energy dispersive X-ray spectroscopy analysis showed that the coatings are mainly composed of Ti, O, P, and Eu; it is observed that Eu content in the coatings increases with PEO time. The X-ray diffraction analysis indicated that the coatings are crystallized and composed of anatase and rutile TiO2 phases, with anatase being the dominant one. X-ray photoelectron spectroscopy revealed that Ti 2p spin-orbit components of TiO2:Eu3+ coatings are shifted towards higher binding energy, with respect to pure TiO2 coatings, suggesting that Eu3+ ions are incorporated into TiO2 lattice. Diffuse reflectance spectroscopy showed that TiO2:Eu3+ coatings exhibit evident red shift with respect to the pure TiO2 coatings. Photoluminescence (PL) emission spectra of TiO2:Eu3+ coatings are characterized by sharp emission bands in orange-red region ascribed to f-f transitions of Eu3+ ions from excited level D-5(0) to lower levels F-7(J) (J=0, 1, 2, 3, and 4). The excitation PL spectra of TiO2:Eu3+ coatings can be divided into two regions: the broad band region from 250 nm to 350 nm associated with charge transfer state of Eu3+ and the series of sharp peaks in the range from 350 nm to 550 rim corresponding to direct excitation of the Eu3+ ions. It is observed that the intensity of peaks in excitation and emission PL spectra increases with the concentration of Eu3+, but the peak positions remain practically unchanged. The ratio of PL emission for electric and magnetic dipole transitions indicates highly asymmetric environment around Eu3+ ions. The photocatalytic activity (PA) of TiO2:Eu3+ coatings is evaluated by measuring the photodegradation of methyl orange under simulated sunlight conditions. It is shown that PEO time, i.e., the amount of Eu3+ incorporated into coatings is an important factor affecting PA; TiO2:Eu3+ coating formed after 1 min of PEO time showed the highest PA. (C) 2016 Elsevier B.V. All rights reserved.