화학공학소재연구정보센터
Journal of Membrane Science, Vol.152, No.2, 143-149, 1999
Binding of DL-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode
An anion-exchange-group-containing porous membrane in the form of a hollow fiber was prepared to immobilize bovine serum albumin (BSA) as a chiral selector. First, an epoxy-group-containing polymer chain was grafted onto the pore surface of the polyethylene porous hollow-fiber membrane pre-irradiated with an electron beam. Second, the epoxy group was converted to diethylamino and 2-hydroxyethylamino groups. Third, a BSA solution was forced to permeate through the pores of the membrane. As a result, 190 mg BSA per gram of membrane, which amounted to a degree of multilayer binding of about four, were immobilized. Subsequently, a racemic solution of tryptophan (0.02 mM) was forced to permeate through the BSA-multilayered porous membrane at a flow rate ranging from 10 to 80 ml/h. A two-stage stepwise concentration change of tryptophan in the effluent was observed due to independent chiral recognition of D- and L-tryptophan by BSA adsorbed in multilayers within the graft chains.