Applied Surface Science, Vol.366, 432-438, 2016
Formation process of in situ oxide coatings with high porosity using one-step plasma electrolytic oxidation
Porous oxide films prepared via plasma electrolytic oxidation are ideal in situ catalysts. However, such films have low porosity. To overcome this limitation, we proposed a promising approach that controls discharge events. The treatments were performed in two kinds of alkaline-silicate solutions namely KOH-enriched solution and Na2SiO3-enriched solution. The coatings prepared in the former electrolyte exhibited superior growth behaviors and catalytic structures. Due to the strong corrosive of KOH-enriched electrolyte, the growth of the film was suppressed, and the sparks were maintained small and evenly distributed throughout the process. Such layers showed high porosity and were evenly covered by nanoparticles. The coating porosity increased with increasing time, and the film treated for 60 min exhibited a high porosity of 33.3+/-1.7%. Moreover, an oxide film with an outer dendritic and inner porous structure was formed within 120 min. The energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy characterizations indicated that the coatings were mainly composed of aluminum oxide and that the doped iron oxide was enriched on the top surface of the coating. Finally, the formation mechanisms of the coating and nanoparticles were discussed with consideration of the dynamic equilibrium theory. (C) 2016 Elsevier B.V. All rights reserved.