화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.14, No.2, 3158-3177, 2013
A Novel Peroxidase CanPOD Gene of Pepper Is Involved in Defense Responses to Phytophtora capsici Infection as well as Abiotic Stress Tolerance
Peroxidases are involved in many plant processes including plant defense responses to biotic and abiotic stresses. We isolated a novel peroxidase gene CanPOD from leaves of pepper cultivar A3. The full-length gene has a 1353-bp cDNA sequence and contains an open reading frame (ORF) of 975-bp, which encodes a putative polypeptide of 324 amino acids with a theoretical protein size of 34.93 kDa. CanPOD showed diverse expression levels in different tissues of pepper plants. To evaluate the role of CanPOD in plant stress responses, the expression patterns of CanPOD were examined using Real-Time RT-PCR. The results indicated that CanPOD was significantly induced by Phytophtora capsici. Moreover, CanPOD was also up-regulated in leaves after salt and drought stress treatments. In addition, CanPOD expression was strongly induced by signaling hormones salicylic acid (SA). In contrast, CanPOD was not highly expressed after treatment with cold. Meanwhile, in order to further assess the role of gene CanPOD in defense response to P. capsici attack, we performed a loss-of-function experiment using the virus-induced gene silencing (VIGS) technique in pepper plants. In comparison to the control plant, the expression levels of CanPOD were obviously decreased in CanPOD-silenced pepper plants. Furthermore, we analyzed the effect of P. capsici on detached-leaves and found that the CanPOD-silenced plant leaves were highly susceptible to P. capsici infection. Taken together, our results suggested that CanPOD is involved in defense responses to P. capsici infection as well as abiotic stresses in pepper plants.