Journal of Electroanalytical Chemistry, Vol.648, No.2, 119-127, 2010
Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition
The novel Sb-doped SnO2 electrodes (TiO2-NTs/SnO2-Sb) have been prepared by anodization, electrodeposition and annealing. TiO2 nanotubes (TiO2-NTs) after Sb and Sn electrodeposited were characterized using field-emission scanning electron microscopy (FE-SEM). In contrast with the traditional Sb-doped SnO2 coating prepared by thermal decomposition, the Sb-doped SnO2 coating prepared by electrodeposition processes show more compact. X-ray diffraction (XRD) analysis indicates that the Sb-doped SnO2 coating prepared by electrodeposition processes are firmly combined with the TiO2-NTs formed on the Ti substrate. Accelerated service life tests reveal that the electrodeposition processes enhance the electrochemical stability of the Sb-doped SnO2 electrode. The cyclic voltammetry analysis shows that TiO2-NTs/SnO2-Sb electrodes have higher overpotential for oxygen evolution and higher electrochemical porosity. Besides, the enhanced stabilization mechanism of the TiO2-NTs/SnO2-Sb electrode prepared by electrodeposition processes has been studied. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:TiO2-NTs/SnO2-Sb electrode;Electrodeposition;Electrochemical stability;Electrochemical porosity;Stabilization mechanism