Journal of Physical Chemistry B, Vol.120, No.13, 3403-3413, 2016
Swift Heavy Ion Irradiation as a Tool for Homogeneous Dispersion of Nanographite Platelets within the Polymer Matrices: Toward Tailoring the Properties of PEDOT:PSS/Nanographite Nanocomposites
Performance of the polymer nanocomposites is dependent to a great extent on efficient and homogeneous dispersion of nanoparticles in polymeric matrices. The dispersion of nanographite platelets (NGPs) in polymer matrix is a great challenge because of the inherent inert nature of the NGPs, poor wettability toward polymer matrices, and easy agglomeration due to van der Waals interactions. In the present study, attempts have been made to use a new approach involving the irradiation of polymer nanocomposites through swift heavy ion (SHI) to homogeneously disperse the NGPs within the polymer matrices. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/nanographite nano composite (NC) films prepared by the solution blending method were irradiated with SHI (Ni ion beam, 80 MeV) at a fluence range of 1 X 10(10) to 1 X 101(2) ions/cm(2). XRD studies revealed that ion irradiation results in delamination and better dispersion of NGPs in the irradiated nanocomposite films compared to unirradiated films, which is also depicted through SEM, AFM, TEM, and Raman studies. In the irradiated polymer nanocomposite films, the conformation of PEDOT chains changes from coiled to extended coiled structure, which, along with homogeneously dispersed NGPs in irradiated NCs, shows an excellent synergistic effect facilitating charge transport. The remarkable improvement in conductivity from 1.9 X 10(-2) in unirradiated NCs to 0.45 S/cm in irradiated NCs is observed with marked improvement in sensing the response toward nitroaromatic vapors at room temperature. The temperature induced conductivity studies have been carried out for PEDOT:PSS/nanographite NCs to comprehend the charge transport mechanism in NC films using the 3D Mott variable range hopping model also. The study reveals SHI as a novel Method, addressing the challenge associated with the dispersion of NGPs within the polymer matrix for their enhanced performance toward various applications.