Process Safety and Environmental Protection, Vol.100, 142-149, 2016
Effect of temperature-programmed pyrolysis pre-treatment on desulfurization performance of Zn-based sorbent prepared by lignite as support
A series of Zn-based sorbents were prepared by high-pressure impregnation with lignite as precursor of support and zinc nitrate as the precursor of active component, followed by temperature-programmed pyrolysis of the impregnated lignite sample in a fixed-bed quartz reactor. The H2S removal performances of sorbents prepared under different pyrolysis conditions such as temperatures, holding time as well as heating rates were evaluated. The physical and chemical properties of sorbents were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption techniques. The results show that the process of pyrolysis can improve the pore structure dramatically, which lead to the high specific surface area and large pore volume. The good desulfurization performance of sorbent was attributed to both of the proper porous structure of sorbents, the content and distribution of active component. The optimal operating conditions of temperature-programmed pyrolysis for the impregnated lignite sample were the heating rate of 10 degrees C/min, holding time of 180 min in N-2 atmosphere and pyrolysis temperature of 550 degrees C. The sulfidation time could hold for over 720 min before reaching 1 ppm H2S in outlet gases and the sulfur capacity was up to 25.91 g S/100 g ZnO for sorbent prepared under this optimized condition. (C) 2016 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Keywords:Lignite;Temperature-programmed pyrolysis;Sorbent;Desulfurization;Hot coal gas;High-pressure impregnation