화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.5, 1551-1556, May, 2016
Trimetallic catalyst synthesized multi-walled carbon nanotubes and their application for hydrogen storage
E-mail:
Multi-walled carbon nanotubes (MWCNTs) were synthesized by rapid thermal decomposition method using trimetallic catalyst supported MgO. MWCNTs prepared via trimetallic catalyst shows much higher BET specific surface area compared to current monometallic and bimetallic catalyst. As-grown and pristine MWCNTs were found to adsorb nitrogen reversibly and their adsorption uptake exhibits type-II BET isotherm. Existence of small impurities, such as metal and metal oxides present in the MWCNTs, was confirmed by thermogravimetric analysis as well as via energy-dispersive X-ray spectroscopy. An over 10 wt% enhancement of hydrogen storage capacity of as-grown MWCNTs compared to pristine was found to be due to the presence of impurities. Fast kinetics and complete reversibility gives indication that the process responsible for hydrogen adsorption uptake in MWCNTs is physisorption. A linear relation between hydrogen uptake (~0.22 and 0.20 wt%) and equilibrium hydrogen pressure was obtained for both as-grown and pristine MWCNTs.
  1. Moradi SE, Korean J. Chem. Eng., 31(9), 1651 (2014)
  2. Ibrahim SM, Korean J. Chem. Eng., 31(10), 1792 (2014)
  3. Yang J, Sudik A, Wolverton C, Siegel DJ, Chem. Soc. Rev., 39, 656 (2010)
  4. Benard P, Chahine R, Scr. Mater., 56, 803 (2007)
  5. Lee SM, An KH, Lee YH, Seifert G, Frauenheim T, J. Am. Chem. Soc., 123(21), 5059 (2001)
  6. Cheng HM, Yang QH, Liu C, Carbon, 39, 1447 (2001)
  7. Simonyan VV, Johnson JK, J. Alloy. Compd., 330-332, 659 (2002)
  8. Jorda-Beneyto M, Suarez-Garcıa F, Lozano-Castello D, Cazoria-Amoros D, Linares-Solano A, Carbon, 45, 293 (2007)
  9. Shi SZ, Hwang JY, Int. J. Hydrog. Energy, 32(2), 224 (2007)
  10. Benard P, Chahine R, Chandonia PA, J. Alloy. Compd., 446-447, 380 (2007)
  11. Zhou L, Renew. Sust. Energ. Rev., 9, 395 (2005)
  12. Yang Z, Grant DM, Wang P, Walker GS, Faraday Discuss., 151, 133 (2011)
  13. Dillon AC, Heben MJ, Appl. Phys. A-Mater. Sci. Process., 72, 133 (2001)
  14. Darkrim FL, Malbrunot P, Tartaglia GP, Int. J. Hydrog. Energy, 27(2), 193 (2002)
  15. Hassan NHA, Mohamed AR, Zein SHS, Diam. Relat. Mat., 16, 1517 (2007)
  16. Strobel R, Garche J, Moseley PT, Jorissen L, Wolf G, J. Power Sources, 159(2), 781 (2006)
  17. Ren Y, Price DL, Appl. Phys. Lett., 79, 3684 (2007)
  18. Patchkovskii S, Tse JS, Yurchenko SN, P. Natl. Acad. Sci. USA, 102, 10439 (2005)
  19. Burian A, Dore JC, Fischer HE, J. Phys. Rev., B, 59, 1665 (1999)
  20. Babaev PI, Dubinin MM, Isirikyan AA, Russ. Chem. Bull., 25, 1815 (1976)
  21. Zacharia R, Kim KY, Kibria AKMF, Nahm KS, Chem. Phys. Lett., 412(4-6), 369 (2005)
  22. Jorio A, Pimenta MA, Filho AGS, New J. Phys., 5, 139 (2003)
  23. Melanitis N, Tetlow PL, Galiotis C, J. Mater. Sci., 31(4), 851 (1996)
  24. Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, Meyyappan M, Chem. Phys. Lett., 365(1-2), 69 (2002)
  25. Jiang C, Kempa K, Zhao J, Phys. Rev. B, 66, 161404 (2002)
  26. Li F, Wang Y, Wang D, Wei F, Carbon, 42, 2375 (2004)
  27. Eswaranoorthy M, Sen R, Rao CNR, Chem. Phys. Lett., 304, 207 (1999)
  28. Adamson AW, Physical Chemistry of Surfaces, Wiley, NewYork (1990).
  29. Zacharia R, Kim KY, Hwang SW, Nahm KS, Catal. Today, 120(3-4), 426 (2007)
  30. Kim DY, Yang CM, Park YS, Kim KK, Jeong SY, Han JH, Lee YH, Chem. Phys. Lett., 413(1-3), 135 (2005)
  31. Birch ME, Ruda-Eberenz TA, Chai M, Andrews R, Hatfield RL, Ann. Occup. Hyg., 57, 1148 (2013)
  32. Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosen A, Bolton K, Nano Lett., 8, 463 (2008)
  33. Cai J, Li L, Lv X, Yang C, Zhao X, ACS Appl. Mater. Interfaces, 6, 167 (2014)
  34. Shiraishi M, Takenobu T, Yamada A, Ata M, Kataura H, Chem. Phys. Lett., 358(3-4), 213 (2002)
  35. Wildgoose GG, Banks CE, Compton RG, Small, 2, 182 (2006)