Journal of Industrial and Engineering Chemistry, Vol.36, 229-237, April, 2016
Effect of temperature on foam flow in porous media
E-mail:
Foam can increase sweep efficiency within a porous medium, which is useful for oil-recovery processes [1]. The flow of foam in porous media is a complex process that depends on properties like permeability, porosity and surface chemistry, but also temperature. Although the surface activity of surfactants as a function of temperature is well described at the liquid/liquid or liquid/gas interface, data on the effect of temperature on foam stability is limited, especially in porous media. In this work, we tested a surfactant (AOS) at different temperatures, from 20 °C to 80 °C, in a sandstone porous medium with co-injection of foam. The pressure gradient, or equivalently the apparent viscosity, was measured in steady-state experiments. The core-flood experiments showed that the apparent viscosity of the foam decreased by 50% when the temperature increased to 80 °C. This effect correlates with the lower surface tension at higher temperatures. These results are compared to bulk foam experiments, which show that at elevated temperatures foam decays and coalesces faster. This effect, however, can be attributed to the faster drainage at high temperature, as a response to the reduction in liquid viscosity, and greater film permeability leading to faster coarsening. Our results using the STARS foam model show that one cannot fit foam-model parameters to data at one temperature and apply the model at other temperatures, even if one accounts for the change in fluid properties (surface tension and liquid viscosity) with temperature. Experiments show an increase in gas mobility in the low-quality foam regime with increasing temperature that is inversely proportional to the decrease in gas-water surface tension. In the high-quality regime, results suggest that the water saturation at which foam collapses fmdry increases and Pc* decreases with increasing temperature.
- Farajzadeh R, Andrianov A, Krastev R, Hirasaki GJ, Rossen WR, Adv. Colloid Interface Sci., http://dx.doi.org/10.1016/j.cis.2012.07.002., 183-184, 1 (2012)
- Rossen WR, Foams: Theory: Measurements: Applications, Marcel Dekker, Inc., New York, NY,Basel, 1995.
- Laurier L, Schramm, Wassmuth F, Foams: Fundamentals and Applications in Laurier L, Schramm, Fred Wassmuth, Foams: Fundamentals and Applications in the Petroleum Industry, vol. 242, American Chemical Society, 1994p. 3.
- Schramm LL, Surfactants Fundamentals and Applications in the Petroleum Industry, Cambridge University Press, Calgary, Canada, 2000.
- Shan D, Rossen WR, SPE J., 10.2118/88811-PA., 9(08), 132 (2004)
- Vikingstad AK, Skauge A, Høiland H, Aarra M, Colloids Surf. A: Physicochem. Eng. Asp., http://dx.doi.org/10.1016/j.colsurfa.2005.02.034., 260(1-3), 189 (2005)
- Jones SA, Laskaris G, Bonnieu SV, Farajzadeh R, Rossen WR, Vol. SPE-179637-MS, Society of Petroleum Engineers, Tulsa, USA, 2016.
- Farajzadeh R, Vincent-Bonnieu S, Bourada NB, J. Soft Matter, 10.1155/2014/145352., 2014, e14535 (2014)
- Maini BB, Ma V, J. Can. Pet. Technol., http://dx.doi.org/10.2118/86-06-05., 25(06), 1986
- Sharma MK, Shah DO, Brigham WE, AIChE J., http://dx.doi.org/10.1002/aic.690310208., 31(2), 222 (1985)
- Farajzadeh R, Krastev R, Zitha PLJ, Langmuir, http://dx.doi.org/10.1021/la803599z., 25(5), 2881 (2009)
- Chabert M, Nabzar L, Beunat V, Lacombe E, Cuenca A, SPE 169116-MS, SPE Improved Oil Recovery Symposium, 12-16 April, Tulsa, Oklahoma, USA, 2014.
- Danelis S, Kapetas L, Vincent-Bonnieu S, Rossen WR, Temperature Effect on Foam Coreflood Experiments, TU Delft, Civil Engineering and Geosciences, Geotechnology, 2015.
- Kapetas L, van El WA, Rossen WR, SPE 169059-MS, SPE Improved Oil Recovery Symposium, 12-16 April, Tulsa, Oklahoma, USA, 2014.
- Apaydin OG, Kovscek AR, Transp. Porous Media, http://dx.doi.org/10.1023/A:1010740811277., 43(3), 511 (2001)
- Ma K, Lopez-Salinas JL, Puerto MC, Miller CA, Biswal SL, Hirasaki GJ, Energy Fuels, http://dx.doi.org/10.1021/ef302036., 27(5), 2363 (2013)
- Moradi-Araghi A, Johnston EL, Zornes DR, Harpole KJ, SPE 37218-MS, International Symposium on Oilfield Chemistry, 18-21 February, Houston, Texas, 1997.
- Osterloh WT, Jante MJ, et al. SPE 24179-MS, SPE/DOE Enhanced Oil Recovery Symposium, 22-24 April, Tulsa, Oklahoma, 1992.
- Alvarez JM, Rivas HJ, Rossen WR, et al., SPE J., 6(03), 325 (2001)
- Computer Modelling Group Ltd., User’s Guide STARS, Computer Modelling Group Ltd., Calgari, Canada, 2009.
- Boeije CS, Rossen W, SPE Reserv. Eval. Eng., http://dx.doi.org/10.2118/174544-PA., 18(02), 264 (2015)
- Jacobsen RT, Stewart RB, J. Phys. Chem. Ref Data, http://dx.doi.org/10.1063/1.3253132., 2(4), 757 (1973)
- Johnson EF, Bossler DP, Bossler VON, Calculation of Relative Permeability from Displacement Experiments, SPE-1023-G, Society of Petroleum Engineers, 1959.
- Bikerman JJ, Surface Chemistry, second ed., Academic Press, 1958p. 1.
- Saint-Jalmes A, Soft Matter, http://dx.doi.org/10.1039/b606780h., 2(10), 836 (2006)
- Georgieva D, Cagna A, Langevin D, Soft Matter, http://dx.doi.org/10.1039/B822568K., 5(10), 2063 (2009)
- Saint-Jalmes A, Langevin D, J. Phys. Condens. Matter, 14(40), 9397 (2002)
- Hilgenfeldt S, Koehler S, Stone H, Phys. Rev. Lett., http://dx.doi.org/10.1103/PhysRevLett.86.4704., 86(20), 4704 (2001)
- Khatib ZI, Hirasaki GJ, Falls AH, et al., SPE Reservoir Eng., 3(03), 919 (1988)
- Hirasaki GJ, Lawson JB, Soc. Pet. Eng. J., http://dx.doi.org/10.2118/12129-PA., 25(02), 176 (1985)
- Tang GQ, Kovscek AR, Transp. Porous Media, http://dx.doi.org/10.1007/s11242-005-6093-4., 65(2), 287 (2006)
- Rossen WR, Wang MW, SPE J., http://dx.doi.org/10.2118/56396-PA., 4(02), 92 (1999)
- Schramm LL, Green WHF, Colloids Surf. A: Physicochem. Eng. Asp., http://dx.doi.org/10.1016/0927-7757(94)02997-7., 94(1), 13 (1995)
- Cheng L, Reme AB, Shan D, Coombe DA, Rossen WR, SPE 59287-MS, PE/DOE Improved Oil Recovery Symposium, 3-5 April, Tulsa, Oklahoma, 2000.
- Zhou Z, Rossen WR, SPE Adv. Technol. Ser., http://dx.doi.org/10.2118/0-PA 2418., 3(01), 154 (1995)