Science, Vol.350, No.6256, 72-75, 2015
Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers
We used statistical mechanics to design polymers that defy conventional wisdom by self-assembling into "megasupramolecules" (>= 5000 kg/mol) at low concentration (<= 0.3 weight percent). Theoretical treatment of the distribution of individual subunits-end-functional polymers-among cyclic and linear supramolecules (ring-chain equilibrium) predicts that megasupramolecules can format lowtotal polymer concentration if, and only if, the backbones are long (> 400 kg/mol) and end-association strength is optimal. Viscometry and scattering measurements of long telechelic polymers having polycyclooctadiene backbones and acid or amine end groups verify the formation of megasupramolecules. They control misting and reduce drag in the same manner as ultralong covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (weight-average molecular weights of 400 to 1000 kg/mol) and reversible linkages that protect covalent bonds, these megasupramolecules overcome the obstacles of shear degradation and engine incompatibility.