화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.2, No.2, 109-120, 2001
Glycerol-Induced Aggregation of the Oligomeric L-Asparaginase II from E. coli Monitored with ATR-FTIR
In this paper attenuated total reflectance Fourier transform infrared spectroscopy has been employed for the study of the structural composition of aggregates of the oligomeric L-asparaginase II from E.coli formed in the presence of glycerol after the induction of refolding of the protein. Apart from the perfect coincidence of the secondary structure composition of EcA2 as determined by FTIR and crystallography [1], it has also been shown that secondary structure of protein in asparaginase deposits is similar to that of the native conformation: 20.7% extended, 22.3% disordered, 31.4% helix and 25.6% turn/bend/β sheet. Certain structural similarities in the range of experimental error was observed for all three protein deposits presented in this paper, indicating a common structural basis for the composition of this types of aggregates. It is concluded that in the constitution of such precipitates, a partially folded (molten globule like) state(s) is involved, and its stabilisation is a key factor leading to the aggregation. The results presented in this paper might serve to be a good explanation and an excellent basis for the fundamental theory of protein (oligomers) precipitation by osmotic substances.