화학공학소재연구정보센터
Experimental Heat Transfer, Vol.29, No.2, 266-283, 2016
STUDY OF PHASE CHANGE AND SUPERCOOLING IN MICRO-CHANNELS BY INFRARED THERMOGRAPHY
The present work presents a fast and simple new experimental method, designed to enhance the observation and characterization of thermal phenomena at microscale. Supercooling of water was carried out in micro-channels and recorded with a high-frequency infrared camera. The method is based on the coupling of microfluidics, infrared thermography, and inverse techniques. The objective is to extract a maximum of information from the experiment to perform advanced characterization of the system. First, a thermal modeling of such a system was written, then the image processing from infrared recordings allowed estimating the thermal properties (diffusivity) and the source term (energy released by the phase change). The novelty of the approach is the ability of measuring the heat released by the phase change and using this displacement to calculate the ice front propagation velocity and thermal properties. This method is appropriate for many other applications and is mainly devoted to the characterization of fluids during phase change at microscale.