화학공학소재연구정보센터
Current Microbiology, Vol.72, No.4, 444-449, 2016
Identification and Evaluation of Reliable Reference Genes in the Medicinal Fungus Shiraia bambusicola
The stability of reference genes plays a vital role in real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis, which is generally regarded as a convenient and sensitive tool for the analysis of gene expression. A well-known medicinal fungus, Shiraia bambusicola, has great potential in the pharmaceutical, agricultural and food industries, but its suitable reference genes have not yet been determined. In the present study, 11 candidate reference genes in S. bambusicola were first evaluated and validated comprehensively. To identify the suitable reference genes for qRT-PCR analysis, three software-based algorithms, geNorm [27], NormFinder [1] and Best Keeper [20], were applied to rank the tested genes. RNA samples were collected from seven fermentation stages using different media (potato dextrose or Czapek medium) and under different light conditions (12-h light/12-h dark and all-dark). The three most appropriate reference genes, ubi, tfc and ags, were able to normalize the qRT-PCR results under the culturing conditions of 12-h light/12-h dark, whereas the other three genes, vac, gke and acyl, performed better in the culturing conditions of all-dark growth. Therefore, under different light conditions, at least two reference genes (ubi and vac) could be employed to assure the reliability of qRT-PCR results. For both the natural culture medium (the most appropriate genes of this group: ubi, tfc and ags) and the chemically defined synthetic medium (the most stable genes of this group: tfc, vac and ef), the tfc gene remained the best gene used for normalizing the gene expression found with qRT-PCR. It is anticipated that these results would improve the selection of suitable reference genes for qRT-PCR assays and lay the foundation for an accurate analysis of gene expression in S. bambusicola.