Current Microbiology, Vol.71, No.1, 83-94, 2015
Enantioselective Microbial Hydroxylation as a Useful Tool in the Production of Jasmonate Derivatives with Aphid Deterrent Activity
Microbial transformations of two natural compounds dihydrojasmone (1) and cis-jasmone (3) in the growing cultures of selected twenty strains have been investigated. The studies have demonstrated a biocatalytic potential of tested microorganisms for the enantioselective hydroxylation of jasmonates. The substrates underwent an effective regio- and stero-selective hydroxylation at the allylic position in the cyclopentenone ring, and the corresponding optically pure keto-alcohols (2, 4) were obtained. The process of biohydroxylation depended on the composition of reaction medium. In the studied cultures, (+)-(R)-4-hydroxydihydrojasmone (2) and (+) and (-)-4-hydroxyjasmone (4a, 4b) were produced in good yields and high enantiomeric excesses. Moreover, the introduction of the hydroxy group into the molecule of jasmonate ketones 1 and 3 leads to biologically active derivatives 2 and 4 that regulate the behaviour of aphids Myzus persicae by termination of their feeding.