Biochemical and Biophysical Research Communications, Vol.464, No.1, 7-12, 2015
Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis
The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this comorbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. Published by Elsevier Inc.