화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.463, No.4, 968-974, 2015
Hypermethylation of MST1 in IgG4-related autoimmune pancreatitis and rheumatoid arthritis
The serine/threonine kinase Mst1 plays important roles in the control of immune cell trafficking, proliferation, and differentiation. Previously, we reported that Mst1 was required for thymocyte selection and regulatory T-cell functions, thereby the prevention of autoimmunity in mice. In humans, MST1 null mutations cause T-cell immunodeficiency and hypergammaglobulinemia with autoantibody production. RASSF5C(RAPL) is an activator of MST1 and it is frequently methylated in some tumors. Herein, we investigated methylation of the promoter regions of MST1 and RASSF5C(RAPL) in leukocytes from patients with IgG4-related autoimmune pancreatitis (AIP) and rheumatoid arthritis (RA). Increased number of CpG methylation in the 5' region of MST1 was detected in AIP patients with extrapancreatic lesions, whereas AIP patients without extrapancreatic lesions were similar to controls. In RA patients, we detected a slight increased CpG methylation in MST1, although the overall number of methylation sites was lower than that of AIP patients with extrapancreatic lesions. There were no significant changes of the methylation levels of the CpG islands in the 5' region of RASSF5C(RAPL) in leukocytes from AIP and RA patients. Consistently, we found a significantly down-regulated expression of MST1 in regulatory T cells of AIP patients. Our results suggest that the decreased expression of MST1 in regulatory T cells due to hypermethylation of the promoter contributes to the pathogenesis of IgG4-related AIP. (C) 2015 Elsevier Inc. All rights reserved.