화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.467, No.3, 503-508, 2015
Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1
Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation. We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fe-4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron-reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fe-4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the iron reductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have. (C) 2015 Elsevier Inc. All rights reserved.