Process Biochemistry, Vol.47, No.3, 460-466, 2012
Effect of solid-phase chemical modification on the features of the lipase from Thermomyces lanuginosus
The lipase from Thermomyces lanuginosus (TLL) was immobilized on octyl Sepharose and further modified with ethylenediamine (EDA) after activation of the carboxylic groups with carbodiimide. Different degrees of modification of the carboxyl groups were carried out by controlling the concentration of carbodiimide (10%, 50% or 100%). Subsequently, the effect of incubation of the modified preparations on hydroxylamine to recover the modified tyrosine was also studied. The modified enzymes exhibited a mobility in native electrophoresis quite different from that of the unmodified lipase (as expected by the changes in charge), and required higher concentrations of cationic detergent to become desorbed from the support. Interestingly, the chemical modification of the immobilized TLL produced an improvement in its activity, proportional to the amination degree. This increase in activity was much more significant at pH 10, where the fully modified preparation increased the activity by a factor of 10 as compared to the unmodified preparation. Moreover, the incubation of the chemically aminated preparations in a hydroxylamine solution improved the activity by an additional factor of 1.2. The fully aminated and incubated in hydroxylamine preparation exhibited a thermostability higher than that of the unmodified preparation, mainly at pH 5 (almost a 30 fold factor). In the presence of tetrahydrofurane, some stabilization was observed at pH 7, while at pH 9 the stability of the modified enzyme decreased (under all the assayed amination degrees) when compared to that of the unmodified enzyme. Thus, this simple protocol may be a rapid and efficient way of preparing a TLL biocatalyst with higher activity and stability, although this will depend on the inactivation conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords:Reversible immobilization;Chemical amination;Improved activity;Stabilization;Thermomyces lanuginosus lipase