화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.2, 179-184, April, 2016
탄소섬유 방향이 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 기계적 물성에 미치는 영향
Influence of Carbon Fiber Direction on Mechanical Properties of Milled Carbon Fibers/Carbon Blacks/Natural Rubber Compounds
E-mail:
초록
본 연구에서는 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 미분쇄 탄소섬유 방향이 기계적 특성에 미치는 영향을 알아보았다. 복합재료는 6 phr 미분쇄 탄소섬유와 40 phr 카본블랙을 천연고무에 첨가하였고 2축-롤-밀 장비를 이용하여 복합재료 내의 미분쇄 탄소섬유를 수직, 수평으로 정렬방향을 제어하였다. 기계적 특성은 인장특성, 인열강도를 통해 고찰하였다. 실험 결과, 인장강도, 100%~300% 모듈러스, 인열강도는 미분쇄 탄소섬유가 수직으로 배향되었을때 그렇지 않았을 때보다 증가하였고 미분쇄 탄소섬유를 정렬하지 않은 복합재료의 기계적 물성은 감소하였다. 결과적으로, 복합재료 내에서 미분쇄 탄소섬유가 수직으로 배향되었을 때 인장특성과 인열강도의 증가로 이어진 결과이며, 이러한 결과는 탄성력이 우수한 미분쇄 탄소섬유의 존재가 기인하였기 때문이라고 판단된다.
In this work, the influence of milled carbon fiber direction on mechanical properties of milled carbon fibers/carbon blacks/natural rubber compounds was investigated. The compounds were prepared by adding the 6 phr milled carbon fibers (MCFs) and 40 phr carbon blacks (CBs) into the natural rubber. The MCFs were aligned in a parallel and orthogonal direction in the compounds using two-roll-mill machine. Mechanical properties of compounds were studied by tensile characteristics and tearing strength. As a result, the compounds showed higher tensile strength, 100%~300% modulus, and tearing strength than those of using any other compounds due to the aligning MCFs in parallel. Mechanical properties of the compounds reinforced with non-aligned MCFs were inferior to those of others. Consequently, the parallel aligned MCFs in the compounds led to an increase of tensile properties and improvement of tearing strength, resulted from MCFs with the high elastic modulus.
  1. Hosseini SM, Kashani MR, Polymer, 55, 6426 (2014)
  2. Ryu CS, Hong CK, Moon CW, Kaang SY, Elastomer, 41, 194 (2006)
  3. Pyo KD, Park CC, Elastomers Compos., 46, 324 (2011)
  4. Li MC, Zhang Y, Cho UR, Mater. Des., 63, 565 (2014)
  5. Papageorgiou DG, Kinloch IA, Young RJ, Carbon, 95, 460 (2015)
  6. Rattanasom N, Prasertsri S, Ruangritnumchai T, Polym. Test, 28, 8 (2009)
  7. Cho YS, Cho DH, Elastomers Compos., 46, 186 (2011)
  8. Cataldo F, J. Macromol. Sci.-Phys., 47, 818 (2008)
  9. Wang LL, Zhang LQ, Tian M, Mater. Des., 39, 450 (2012)
  10. Kim SM, Nam CS, Kim KJ, Appl. Chem. Eng., 22(2), 144 (2011)
  11. Dacikj AI, Gaceva GB, Rooj S, Wiebner S, Heinrich G, Appl. Clay Sci., 118, 99 (2015)
  12. Park SM, Lim YW, Kim CH, Kim DJ, Moon WJ, Kim JH, Lee JS, Hong CK, Seo G, J. Ind. Eng. Chem., 19(2), 712 (2013)
  13. Choi C, Kim SM, Park YH, Jang MK, Nah JW, Kim KJ, Appl. Chem. Eng., 22(4), 411 (2011)
  14. Omnes B, Thuillier S, Pilvin P, Grohens Y, Gillet S, Compos. Pt. A-Appl. Sci. Manuf., 39, 1141 (2008)
  15. Park SJ, Seo MK, Park ML, Kim HY, 1st ed., 31-202, Carbon Materials, Myoungmoon, Seoul, Korea (2015).
  16. Luheng W, Tianhuai D, Peng W, Carbon, 47, 3151 (2009)
  17. Park SJ, Cho KS, Zaborski M, Slusarski L, Elastomer, 38, 139 (2003)
  18. Hoshikawa Y, An B, Kashihara S, Ishii T, Ando M, Fujisawa S, Hayakawa K, Hamatani S, Yamada H, Kyotani T, Carbon, 99, 148 (2016)
  19. Unterweger C, Duchoslav J, Stifter D, Furst C, Compos. Sci. Technol., 108, 41 (2015)
  20. Ryu SR, Lee DJ, Compos. Res., 16, 18 (2003)
  21. Won HJ, Seong DG, Lee JW, Um MK, Compos. Res., 27, 52 (2014)
  22. Chae KC, Jo SH, Kim EG, Compos. Res., 12, 23 (1999)
  23. Halpin JC, Kardos JL, Polym. Eng. Sci., 16, 344 (1976)
  24. Giner E, Vercher A, Marco M, Arango C, Compos. Struct., 124, 402 (2015)
  25. Nah CW, Rhee JM, Kim WD, Kaang SY, Chang YW, Park SJ, Elastomer, 36, 44 (2001)
  26. Jong L, Ind. Crop. Prod., 65, 102 (2015)
  27. Theppradit T, Prasassarakich P, Poompradub S, Mater. Chem. Phys., 148(3), 940 (2014)
  28. Fu JF, Yu WQ, Dong X, Chen LY, Jia HS, Shi LY, Zhong QD, Deng W, Mater. Des., 49, 336 (2013)
  29. Meththananda IM, Parker S, Patel MP, Braden M, Dent. Mater., 25, 956 (2009)
  30. Sung JH, Ryu SR, Lee DJ, Trans. Korean Soc. Mech. Eng. A, 35, 999 (2011)