화학공학소재연구정보센터
Clean Technology, Vol.22, No.1, 9-15, March, 2016
Al-Zr 혼합산화물 촉매의 제조 및 특성분석
Preparation and Characterization of Al-Zr Mixed Oxide Catalysts
E-mail:
초록
Al/(Al+Zr)의 몰 비를 달리하여 xAl-yZr 산화물 촉매를 공침법으로 제조하였고, 모델반응으로 이소프로판올 탈수반응을 수행하였다. 제조된 촉매는 X-선 회절분석, 시차 열분석법, 질소 흡착법, 암모니아 승온탈착법, 이소프로판올 승온탈착법 등의 특성분석을 수행하였다. 지르코니아에 알루미늄 종을 첨가하면 상대적으로 넓은 비표면적을 갖는 작은 입자를 얻을 수 있으며 지르코니아의 결정상변화를 억제시켰다. 암모니아 승온탈착으로 알루미늄의 몰 비가 증가함에 따라 상대적인 산양이 증가함을 확인하였고, 이소프로판올탈수반응에서 촉매 활성 또한 증가하였다. 이러한 촉매활성은 촉매의 비표면적, 산점, 상대적으로 용이한 이소프로판올의 탈착과 연관시킬 수 있었다.
xAl-yZr mixed oxide catalysts with different molar ratios of Al/(Al+Zr) were prepared by a co-precipitation method and its catalytic performance was compared in the iso-propanol dehydration as a model reaction. The catalysts were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), N2 adsorprion-desorption, NH3 temperature programmed desorption (NH3-TPD), and iso-propanol TPD analyses. The addition of Al into ZrO2 promoted the formation of relatively small particles with large surface areas and retarded the transformation of teragonal phase to monoclnic phase. NH3-TPD results revealed that the relative acidity of the catalysts increased along with the increase of Al molar ratio. The catalytic activity for the dehydration of iso-propanol to propylene was also increased with the same tendency. The catalytic activity could be correlated with high surface area, acidity and easy desorption of iso-propanol.
  1. Quaschning V, Deutsch J, Druska P, Niclas HJ, Kemnitz E, J. Catal., 177(2), 164 (1998)
  2. Damyanova S, Grange P, Delmon B, J. Catal., 168(2), 421 (1997)
  3. Bozo C, Guilhaume N, Herrmann JM, J. Catal., 203(2), 393 (2001)
  4. Doggali P, Teraoka Y, Mungse P, Shah IK, Rayalu S, Labhsetwar N, J. Mol. Catal. A-Chem., 358, 23 (2012)
  5. Zhao CL, Wachs IE, J. Catal., 257(1), 181 (2008)
  6. Sim HI, Park JH, Cho JH, Ahn JH, Choi MS, Shin CH, Korean Chem. Eng. Res., 51(2), 208 (2013)
  7. Chuah GK, Jaenicke S, Appl. Catal. A: Gen., 163(1-2), 261 (1997)
  8. Turek W, Krowiak A, Appl. Catal. A: Gen., 417-418, 102 (2012)
  9. Jung KT, Bell AT, J. Mol. Catal. A-Chem., 163(1-2), 27 (2000)
  10. Aguila G, Gracia F, Araya P, Appl. Catal. A: Gen., 343(1-2), 16 (2008)
  11. Seo JG, Youn MH, Park SY, Chung JS, Song IK, Int. J. Hydrog. Energy, 34(9), 3755 (2009)
  12. Zhang DQ, Duan AJ, Zhao Z, Wan GF, Gao ZY, Jiang GY, Chi KB, Chuang KH, Catal. Today, 149(1-2), 62 (2010)
  13. Li J, Chen JL, Song W, Liu JL, Shen WJ, Appl. Catal. A: Gen., 334(1-2), 321 (2008)
  14. Therdthianwong S, Therdthianwong A, SiangChin C, Yonprapat S, Int. J. Hydrog. Energy, 33(3), 991 (2008)
  15. Iriondo A, Cambra JF, Guemez MB, Barrio VL, Requies J, Sanchez-Sanchez MC, Navarro RM, Int. J. Hydrog. Energy, 37(8), 7084 (2012)
  16. Zhao YB, Qin ZF, Wang GF, Dong M, Huang LC, Wu ZW, Fan WB, Wang JG, Fuel, 104, 22 (2013)
  17. Ferkel H, Naser J, Riehemann W, Nanostruct. Mater., 8, 457 (1997)
  18. http://en.wikipedia.org/wiki/Ionic_radius
  19. Kwak JH, Hu JZ, Kim DH, Szanyi J, Peden CHF, J. Catal., 251(1), 189 (2007)
  20. Kwak JH, Hu J, Lukaski A, Kim DH, Szanyi J, Peden CHF, J. Phys. Chem. C, 112, 9486 (2008)
  21. Kumar VS, Nagaraja BM, Shashikala V, Seetharamulu P, Padmasri AH, Raju BD, Rao KSR, J. Mol. Catal. A-Chem., 223(1-2), 283 (2004)