화학공학소재연구정보센터
Transport in Porous Media, Vol.107, No.2, 403-417, 2015
Exact Solutions for One-Dimensional Transient Gas Flow in Porous Media with Gravity and Klinkenberg Effects
Attempts have been made to find exact solutions for the one-dimensional transient gas flow equation in porous media. By introducing a traveling wave variable, a traveling wave solution of the gas flow equation has been found. The traveling wave solution is presented in an explicit form of the space and time variables, and it takes into account both gravity and Klinkenberg effects (pressure-dependent permeability). We investigated the properties of the traveling wave solution and the effect of some parameters such as the Klinkenberg coefficient. A numerical study has been carried out, which confirms the stability of the traveling wave solution. The traveling wave solution is then used to derive two benchmark solutions defined over the semi-infinite domain. The first one assumes uniform initial gas pressure and non-uniform boundary condition, and the second assumes uniform boundary condition and non-uniform initial distribution of the gas pressure. The benchmark solutions are easy to use and are useful for validating numerical solutions. Two illustrative examples are presented in order to compare the benchmark solutions with the numerical solutions. The results show good agreements between the solutions.