Renewable Energy, Vol.81, 162-172, 2015
Urban wind: Characterisation of useful gust and energy capture
Small-scale wind turbine operations within the urban environment are exposed to high levels of gusts and turbulence compared to flows over less rough surfaces. There is therefore a need for such systems to not only cope with, but to thrive under such fluctuating flow conditions. This paper addresses the potential importance of gust tracking technologies within the urban environment via the analysis of the additional energy present in the gusty wind resource using high resolution measurements at two urban roof-top locations. Results demonstrate significant additional energy present in the gusty wind resource at high temporal resolution. This energy is usually under-represented by the use of mean wind speeds in quantifying the power in the wind over longer averaging times. The results support the promise of capturing a portion of this extra energy through gust tracking solutions. The sensitivity of this "additional" wind energy to averaging time interval is also explored, providing useful information for the design of gust tracking or dynamic control algorithms for small-scale turbines. Relationships between turbulence intensity and excess energy available are drawn. Thus, an analytical model is proposed which may prove useful in predicting the excess energy available across wide areas from, for example, boundary layer turbulence models. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Urban wind;Small-scale vertical-axis wind turbine;Turbulence intensity;Excess energy content