Reactive & Functional Polymers, Vol.93, 30-37, 2015
Preparation and characterization of antimicrobial electrospun poly(vinyl alcohol) nanofibers containing benzyl triethylammonium chloride
The aim of this study was to characterize antimicrobial electrospun poly(vinyl alcohol) (PVA) nanofibers containing benzyl triethylammonium chloride (BTEAC) as an antimicrobial agent. The antimicrobial BTEAC-PVA nanofibers were prepared through electrospinning at the optimal conditions of 15 kV voltage and a 1.0 mL h(-1) flow rate. Based on the minimum inhibitory concentration (MIC) test results against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumonia, BTEAC-PVA nanofibers containing 2.6% BTEAC were fabricated to test the antibacterial and antiviral activities. The average diameter of the BTEAC-PVA nanofibers increased from 175.7 to 464.7 nm with increasing BTEAC concentration from 0 to 2.6%. The antimicrobial activities of the BTEAC-PVA nanofibers were tested against bacteria. The antibacterial tests with 2.6% BTEAC-PVA nanofibers demonstrated that bacterial reduction in PVA nanofibers was similar to the control value, indicating that PVA had a minimal effect on bacteria death. For the BTEAC-PVA nanofibers, the bacterial reduction ratio increased with increasing contact time, demonstrating that BTEAC-PVA nanofibers successfully inhibited the growth of bacteria. In addition, the antiviral tests against viruses (bacteriophages MS2 and PhiX174) showed that the BTEAC-PVA nanofibers inactivated both MS2 and PhiX174. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:Antimicrobial agent;Antimicrobial nanofiber;Benzyl triethylammonium chloride;Electrospinning;Poly(vinyl alcohol)