Polymer, Vol.76, 140-149, 2015
The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators
Soft actuators are of great technological interest and one class of these is made from ionic polymer-metal composites (IPMCs). It has been established that replacement of water with an ionic liquid (IL) in IPMCs results in larger actuation response and considerably longer operating life. However, the rate of displacement of IL-based IPMCs is very low. In the current work, IPMC actuators were fabricated using Nafion membrane and an imidazolium-based IL. The effects of incorporating the IL with and without Li+ ions were followed using electromechanical and electrochemical measurements and were compared with the corresponding behavior of water-based Li+-exchanged and un-exchanged IPMC actuators. The addition of Li+ ions to the IL-based system resulted in dramatic increases in the capacitance, ionic conduction, operating life and in the displacement rate of the actuator. This strategy is of considerable interest for enabling the use of IPMC-based soft actuators in medicine and robotics. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords:Artificial muscle;IPMC actuator;Displacement measurements;Cyclic voltammetery;Impedance spectroscopy