Macromolecules, Vol.48, No.18, 6499-6507, 2015
Phototunable Cross-Linked Polysiloxanes
Silicone elastomers are normally thermoset materials. While their inherent properties make them highly valuable, it would be of interest to develop stimuli-responsive silicones whose properties could be reversibly tuned at will. In the case of silicone polymers, a particularly interesting trigger is light, since silicone elastomers can readily be formulated to be transparent. We describe the utilization of coumarin-modified silicones for this purpose. On their own, the presence of coumarin groups converts silicone oils into thermoplastic elastomers through physical (noncovalent) cross-linking. UV-irradiation permits covalent cross-linking through [2 + 2] cydoadditions and is accompanied by loss of most physical cross-links. Higher energy photons permit, in part, photoinitiated retro-cydoaddition and a subsequent decrease in covalent cross-link density. It is thus possible to tailor the physical properties of the elastomer to increase and/or decrease the modulus of the elastomer using light and to convert thermoreversible thermoplastics, by degree, into thermosets.