화학공학소재연구정보센터
Langmuir, Vol.32, No.4, 991-996, 2016
Hybrid Vesicles with Alterable Fully Covered Armors of Nanoparticles: Fabrication, Catalysis, and Surface-Enhanced Raman Scattering
This work reports on the facile preparation of hybrid polymer vesicles with alterable armors of metal nanoparticles by using a novel hyperbranched polymer vesicle as the templates. The vesicles were prepared through the aqueous self-assembly of a hyperbranched multiarm copolymers with many tertiary amino groups on the surface, which can electrostatically complexed or coordinated with metal ions like AuCl4-, PtCl62-, and Ag+ ions. Subsequently, the vesicles coated with metal ions can be in situ reduced into metal nanoparticles, through which a series of surface-engineered vesicles (Au@vesicles, Ag@vesicles, Pt@vesicles) with an advantage of fully covered metal nanoparticles on the surface could be readily prepared. The morphologies, structures, and formation mechanism of the as-prepared hybrid vesicles were carefully characterized, and the obtained hybrid vesicles also showed great potentials in catalysis and surface-enhanced Raman scattering (SERS) applications.