Langmuir, Vol.32, No.3, 831-837, 2016
Effect of Short Chain Poly(ethylene glycol)s on the Hydration Structure and Dynamics around Human Serum Albumin
We report the changes in the hydration dynamics around a globular protein, human serum albumin (HSA), in the presence of two short chain crowding agents, namely poly(ethylene glycol)s (PEG 200 and 400). The change in the network water structure is investigated using FTIR spectroscopy in the far-infrared (FIR) frequency range. Site specific changes are obtained by time-resolved fluorescence spectroscopic technique using the intrinsic fluorophore tryptophan (Trp214) of HSA. The collective hydration dynamics of HSA in the presence of PEG molecules are obtained using terahertz (THz) time domain spectroscopy (TTDS) and high intensity p-Ge THz measurements. Our study affirms a considerable perturbation of HSA hydration beyond a critical concentration of PEG.