화학공학소재연구정보센터
Langmuir, Vol.31, No.14, 4087-4095, 2015
Nonspherical Nanoparticles with Controlled Morphologies via Seeded Surface-Initiated Single Electron Transfer Radical Polymerization in Soap-Free Emulsion
This work reports a facile novel approach to prepare asymmetric poly(vinylidene fluoride)/polystyrene (PVDF/PS) composite latex particles with controllable morphologies using one-step soap-free seeded emulsion polymerization, i.e., surface-initiated single electron transfer radical polymerization (SET-RP) of styrene (St) at the surface of PVDF seed particles. It was observed that the morphology was influenced mainly by the St/PVDF feed ratio, the polymerization temperature, and the length of the catalyst Cu(0) wire (Phi 1.00 mm). When the feed ratio was St/PVDF = 5.0 g/1.0 g, snowman-like Janus particles were exclusively obtained. Raspberry-like and popcorn-like composite particles were observed at a higher reaction temperature or a shorter length of the catalyst wire. The reaction kinetics plots demonstrated some unique features. The formation of nonspherical composite nanoparticles can be ascribed to the surface nucleation of PS bulges following the SET-RP.