화학공학소재연구정보센터
Langmuir, Vol.31, No.24, 6704-6712, 2015
Preparation of Nickel-Aluminum-Containing Layered Double Hydroxide Films by Secondary (Seeded) Growth Method and Their Electrochemical Properties
Thin films of nickel-aluminum-containing layered double hydroxide (NiAl-LDH) have been prepared on nickel foil and nickel foam substrates by secondary (seeded) growth of NiAl-LDH seed layer: The preparation procedure consists of deposition of LDH seeds from a colloidal suspension on the substrate by dip coating, followed by hydrothermal treatment of the nanocrystals to form the LDH film. The secondary grown film is found to provide a higher crystallinity and more uniform composition of metal cations in the film layer than the in situ grown film on seed-free substrate under identical hydrothermal conditions. A systematic investigation of the film evolution process reveals that the crystallite growth rate is relatively fast for the secondary grown film because of the presence of LDH nanocrystal seeds. Electrochemical performance of the resulting NiAl-LDH films as positive electrode material was further assessed as an example of their practical applications. The secondary grown film electrode delivers improved recharge-discharge capacity and cycling stability compared with that of the in situ grown film, which can be explained by the existence of a unique microstructure of the former. Our findings show an example for the effective fabrication of LDH film with controllable microstructure and enhanced application performance through a secondary (seeded) growth procedure.