화학공학소재연구정보센터
Langmuir, Vol.31, No.46, 12644-12652, 2015
Solvent and Substituent Effects on the Aggregation Behavior of Surface-Active Ionic Liquids with Aromatic Counterions and the Dispersion of Carbon Nanotubes in their Hexagonal Liquid Crystalline Phase
The aggregation behavior of surface-active ionic liquids (SAILs) 1-dodecyl-3-methylimidazolium m- and p-hydroxybenzoate (m-C(12)mimHB and p-C(12)mimHB) in water and ethylammonium nitrate (EAN) was investigated. Surface tension measurements indicate that the cmc values of SAILs in EAN are much higher than those in water, resulting from the weaker solvophobic effect of EAN, and the stronger stability of SAILs/EAN complexes proven by DFT calculations. Compared to 1-dodecyl-3-methylimidazolium salicylate (C(12)mimSal), the effect of substituent position leads to weaker interactions between aromatic counterions and headgroups. The hexagonal liquid crystal (H-1) phase formed by C(12)mimHB in water or EAN at a higher concentration was determined by polarized optical microscopy (POM), small-angle Xray scattering (SAXS), and rheology techniques. Structural parameters estimated from SAXS curves suggest that the higher SAILs concentration or temperature leads to a smaller lattice parameter (a(0)) and a denser arrangement of cylinders. For C(12)mimHB, the formation of the H-1 phase in H2O is easier than that in EAN. Furthermore, compared to C(12)mimSal, C(12)mimHB exists over a broad region of the hexagonal liquid crystalline (H-1) phase, which is due to the different position of the substituents on the aromatic ring of counterions. Therefore, the H-1 phase of the lypotropic liquid crystals (LLCs) formed in the C(12)mimHB/H2O system exhibits excellent performance in uniformly dispersing multiwalled carbon nanotubes (MWCNTs). Increasing the concentration of MWCNTs results in a larger lattice parameter (a(0)) value, indicating the integration of MWCNTs within the cylinders of the H-1 phase. The rheological measurement results demonstrate that MWCNTs/LLCs composites are highly viscoelastic, and the presence of MWCNTs obviously strengthens the apparent viscosity of the H-1 phase.