Journal of the American Chemical Society, Vol.138, No.8, 2670-2677, 2016
1,4-Bis-Dipp/Mes-1,2,4-Triazolylidenes: Carbene Catalysts That Efficiently Overcome Steric Hindrance in the Redox Esterification of alpha- and beta-Substituted alpha,beta-Enals
As reported by Scheidt and Bode in 2005, sterically nonencumbered alpha,beta-enals are readily converted to saturated esters in the presence of alcohols and N-heterocyclic carbene catalysts, e.g., benzimidazolylidenes or triazolylidenes. However, substituents at the alpha- or beta-position of the alpha,beta-enal substrate are typically not tolerated, thus severely limiting the substrate spectrum. On the basis of our earlier mechanistic studies, a set of N-Mes- or N-Dipp-substituted 1,2,4-triazolium salts were synthesized and evaluated as (pre)catalysts in the redox esterification of various alpha- or beta-substituted enals. In particular the 1,4-bis-Mes/Dipp-1,2,4-triazolylidenes overcome the above limitations and efficiently catalyze the redox esterification of a whole series of alpha/beta-substituted enals hitherto not amenable to NHC-catalyzed transformations. The synthetic value of 1,4-bis-Mes/Dipp-1,2,4-triazolylidenes is further demonstrated by the one-step bicyclization of 10-oxocitral to (racemic) nepetalactone in diastereomerically pure form.