Journal of the American Chemical Society, Vol.138, No.8, 2563-2570, 2016
A New G-Quadruplex with Hairpin Loop Immediately Upstream of the Human BCL2 P1 Promoter Modulates Transcription
The abnormal overexpression of the BCL2 gene is associated with many human tumors. We found a new 28-mer G-quadruplex-forming sequence, P1G4, immediately upstream of the human BCL2 gene P1 promoter. The P1G4 is shown to be a transcription repressor using a promoter-driven luciferase assay; its inhibitory effect can be markedly enhanced by the G-quadruplex-interactive compound TMPyP4. G-quadruplex can readily form in the P1G4 sequence under physiological salt condition as shown by DMS footprinting. P1G4 and previously identified Pu39 G-quadruplexes appear to form independently in adjacent regions in the BCL2 P1 promoter. In the extended BCL2 P1 promoter region containing both Pu39 and P1G4, P1G4 appears to play a more dominant role in repressing the transcriptional activity. Using NMR spectroscopy, the P1G4 G-quadruplex appears to be a novel dynamic equilibrium of two parallel structures, one regular with two 1-nt loops and a 12-nt middle loop and another broken-strand with three 1-nt loops and a 11-nt middle loop; both structures adopt a novel hairpin (stem-loop duplex) conformation in the long loop. The dynamic equilibrium of two closely related structures and the unique hairpin loop conformation are specific to the P1G4 sequence and distinguish the P1G4 quadruplex from other parallel structures. The presence of P1G4 and Pu39 in adjacent regions of the BCL2 P1 promoter suggests a mechanism for precise regulation of BCL2 gene transcription. The unique P1G4 G-quadruplex may provide a specific target for small molecules to modulate BCL2 gene transcription.