화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.137, No.33, 10554-10562, 2015
Modular Design of Self-Assembling Peptide-Based Nanotubes
An ability to design peptide-based nanotubes (PNTs) rationally with defined and mutable internal channels would advance understanding of peptide self-assembly, and present new biomaterials for nanotechnology and medicine. PNTs have been made from Fmoc dipeptides, cyclic peptides, and lock-washer helical bundles. Here we show that blunt-ended alpha-helical barrels, that is, preassembled bundles of alpha-helices with central channels, can be used as building blocks for PNTs. This approach is general and systematic, and uses a set of de novo helical bundles as standards. One of these bundles, a hexameric alpha-helical barrel, assembles into highly ordered PNTs, for which we have determined a structure by combining cryo-transmission electron microscopy, X-ray fiber diffraction, and model building. The structure reveals overall symmetry of the peptide module plays a critical role in ripening and ordering of the supramolecular assembly. PNTs based on pentameric, hexameric, and heptameric alpha-helical barrels sequester hydrophobic dye within their lumens. that the