Journal of the American Chemical Society, Vol.137, No.50, 15656-15659, 2015
Hole-Transporting Materials with a Two-Dimensionally Expanded pi-System around an Azulene Core for Efficient Perovskite Solar Cells
Two-dimensionally expanded pi-systems, consisting of partially oxygen-bridged triarylamine skeletons that are connected to an azulene (1-3) or biphenyl core (4), were synthesized and characterized. When tetra-substituted azulene 1 was used as a hole-transporting material (HTM) in perovskite solar cells, the observed performance (power conversion efficiency = 16.5%) was found to be superior to that of the current HTM standard Spiro-OMeTAD. A comparison of the hole mobility, the ability to control the HOMO and LUMO levels, and the hole-collection efficiency at the perovskite/HTM interface in 1 with reference compounds (2-4 and Spiro-OMeTAD) led to the elucidation of key factors required for HTMs to act efficiently in perovskite solar cells.