화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.137, No.40, 12906-12913, 2015
Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property
Metal nanoclusters (NCs) as a new class of phosphors have attracted a great deal of interest owing to their unique electronic structure and subsequently molecule-like optical properties. However, limited successes have been achieved in producing the NCs with excellent luminescent performance. In this paper, we demonstrate the significant luminescence intensity enhancement of 1-dodecanethiol (DT)-capped Cu NCs via selfassembly strategy. By forming compact and ordered assemblies, the original nonluminescent Cu NCs exhibit strong emission. The flexibility of self-assembly allows to further control the polymorphism of Cu NCs assemblies, and hence the emission properties. Comparative structural and optical analysis of the polymorphic NCs assemblies permits to establish a relationship between the compactness of assemblies and the emission. First, high compactness reinforces the cuprophilic Cu(I)center dot center dot center dot Cu(I) interaction of inter- and intra-NCs, and meanwhile, suppresses intramolecular vibration and rotation of the capping ligand of DT, thus enhancing the emission intensity of Cu NCs. Second, as to the emission energy that depends on the distance of Cu(I)center dot center dot center dot Cu(I), the improved compactness increases average Cu(I) Cu(I) distance by inducing additional inter-NCs cuprophilic interaction, and therewith leads to the blue shift of NCs emission. Attributing to the assembly mediated structural polymorphism, the NCs assemblies exhibit distinct mechanochromic and thermochromic luminescent properties. Metal NCs-based white light-emitting diodes are further fabricated by employing the NCs assemblies with blue-green, yellow, and red emissions as phosphors.