화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.99, No.1, 308-314, 2016
Mechanochemical Processing of Mn and Co Oxides: An Alternative Way to Synthesize Mixed Spinels for Protective Coating
High-Energy Ball Milling (HEBM) is proposed as a cost effective and environmental friendly technique to produce Co- and Mn- based oxides suitable for application as protective coating. Mixtures of manganese and cobalt oxides in different molar ratio (Co:Mn=1:1 and Co:Mn=2:1) were subjected to mechanochemical treatment up to 100h and morpho-structural evolution was evaluated. XRD analysis results show that the HEBM treatment promotes the solid-state reaction of the starting compounds, with the formation of different crystalline phases when compared to high-temperature solid-state synthesis. SEM observations and N-2 adsorption measurements suggest that all processed powders are composed by aggregates of nanometric particles. While long milling time is required to complete the reaction, 10hours are enough to activate the powders to obtain the desired phases after a mild thermal treatment, as evidenced by insitu thermal XRD analysis. Electrical conductivity measures performed with the Van der Pauw method on sintered pellets evidence a significant difference between the two compositions, related to the dual-phase nature of Co:Mn=1:1 material at intermediate temperatures (i.e., T<700 degrees C), Co:Mn=2:1 sample showing higher conductivity values in the whole tested range (500 degrees C-800 degrees C).