화학공학소재연구정보센터
Journal of Structural Biology, Vol.190, No.1, 38-46, 2015
The insertion domain 1 of class IIA dimeric glycyl-tRNA synthetase is a rubredoxin-like zinc ribbon
The insertion domain 1 (ID1) of class IIA dimeric glycyl-tRNA synthetase (alpha(2)GRS) is an appended domain in the core catalytic region of the enzyme. ID1 has been shown to play a role in tRNA aminoacylation, mediating interaction with the acceptor arm of tRNA and diadenosine tetraphosphate (Ap4A) synthesis. Mutations in alpha(2)GRS, including those in the ID1 region, have been implicated in distal hereditary motor neuropathy-V (dHMN-V) and Charcot-Marie-Tooth (CMT) disease. Through sequence and structure based evolutionary analysis, we show that ID1 of alpha(2)GRS is a rubredoxin-like zinc ribbon domain. The zinc-chelating cysteines of ID1 are well conserved in all archaeal versions of the enzyme and also in several eukaryotes, which most likely have acquired them via horizontal gene transfer from bacteria; but in all other eukaryotes, the zinc-chelating residues are not preserved. ID1 from bacteria display a selective preservation of zinc-binding residues, ranging from complete conservation to complete loss. The ID1 from different organisms harbor variable-sized non-conserved insertions between the two zinc-binding half-sites of the zinc ribbon. Three of the previously identified CMT-associated mutations in a2GRS, viz., human D146N, mouse C157R and human S211F, are located in the zinc ribbon region of ID1. Interestingly, human Asp146 which is implicated in the synthesis of Ap4A, a molecule known to act during neuronal transmission, has also been reported to be mutated in dHMN-V, suggesting a possible link between hereditary motor neuropathy and Ap4A synthesis. (C) 2015 The Authors. Published by Elsevier Inc.