Journal of Power Sources, Vol.304, 51-59, 2016
In situ Li-7 and Cs-133 nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process
Cesium ion (Cs+) has been reported to be an effective electrolyte additive to suppress Li dendrite growth which prevents the application of lithium (Li) metal as an anode for rechargeable Li batteries. In this work, we investigated the effect of Cs+ additive on Li depositions using quantitative in situ Li-7 and Cs-133 nuclear magnetic resonance (NMR) with planar symmetric Li cells. It's found that the addition of Cs+ can significantly enhance both the formation of well aligned Li nanorods and reversibility of the Li electrode. In situ Cs-133 NMR directly confirms that Cs+ migrates to Li electrode to form a positively charged electrostatic shield during the charging process. Much more electrochemical "active" Li was found in Li films deposited with Cs+ additive, while more electrochemical "dead" and thicker Li rods were identified in Li films deposited without Cs+. Combining the in situ and the previous ex-situ results, a Li deposition model has been proposed to explain these observations. (C) 2015 Elsevier B.V. All rights reserved.