Journal of Power Sources, Vol.284, 574-581, 2015
Synthesis of Li2FeSiO4/carbon nano-composites by impregnation method
Nanocrystalline lithium iron silicate/carbon (Li2FeSiO4/C) composites were successfully prepared by impregnation of a commercial porous carbon using ethanolic solutions of the different metallic precursors, followed by thermal annealing at 600 degrees C. The effects of Li2FeSiO4 loading content on the structure and organization of the Li2FeSiO4/C composites at the nanoscale were investigated. Through optimization of the synthesis conditions, small Li2FeSiO4 nanocrystals (4-12 nm) are formed and well dispersed in the porous conductive carbon. The electrochemical performances of these composites were tested as positive electrodes for lithium-ion batteries. The Li2FeSiO4/C composite with the lowest Li2FeSiO4 loading exhibits the best rate capability with a significant capacity contribution from carbon. It was found that the presence of carbon delays the lowering of the Fe3+/Fe2+ redox voltage usually reported for Li2FeSiO4 (from 3.1/3.0 to 2.8/2.7 V vs. Li+/Li), due to a stabilization effect of the initial Li2FeSiO4 crystal structure. For the Li2FeSiO4/C composite (81/19 weight ratio), a discharge capacity of 81 mAh g(-1) can be achieved at 55 degrees C for a charge/discharge rate of 2C, with 86% capacity retention after 500 cycles, showing the positive effect of the porous carbon addition for long term cycling stability. (C) 2015 Elsevier B.V. All rights reserved.