Journal of Power Sources, Vol.293, 274-282, 2015
Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell
For the purpose of reducing the cost and improving the performance of the proton exchange membrane fuel cell (PEMFC), some low-Pt or non-Pt catalysts have been studied in recent years. PtCo/C electrocatalysts are synthesized by a two-step reduction approach followed by the heat treatment. PtCo metal particles are uniformly dispersed on the surface of XC-72 carbon support, with a uniform particle size distribution. The PtCo/C catalyst after 400 degrees C heat treatment has the best electrochemical performance among the as-prepared catalysts, even superior to the commercial Pt/C catalyst. In the durability test, PtCo/C-400 also shows excellent stability with only 6.9% decline of electrochemical surface area (ECSA) after 1000 cyclic voltammetry (CV) cycles. In-situ X-ray absorption near edge structure (XANES) technique is conducted to explore the nanostructure change of Pt during the PEMFC operation. For PtCo/C catalyst, with the fuel cell operation potential decreasing from open circuit voltage (OCV) to 0.3 V, the Pt L-3 white line intensity decreases continuously, indicating the decline of Pt 5d-vacancy due to the adsorption of oxygenated species. (C) 2015 Elsevier B.V. All rights reserved.