화학공학소재연구정보센터
Journal of Materials Science, Vol.33, No.22, 5415-5422, 1998
Failure modes of fibre reinforced composites: The effects of strain rate and fibre content
The many aspects of high speed response of fibre reinforced composite materials have received the attention of a large number of investigators. Nevertheless, the understanding of the mechanisms governing failure under high speed loadings remain largely unknown. The effect of rate and fibre content on failure mechanisms was investigated by viewing fractured surfaces of tensile specimens using a scanning electron microscope (SEM). Tensile tests were conducted on a woven glass/epoxy laminate at increasing rates of strain. A second laminate (with random continuous glass reinforcement) was tested in tension at varying fibre volume fractions in order to ascertain the relationship between fibre content and failure mechanisms. The results suggest a brittle tensile failure in fibres of the woven laminate. In addition, the matrix was observed to play a greater role in the failure process as speed was increased, resulting in increased matrix damage and bunch fibre pull-out. The results also indicated that increasing the fibre volume fraction increased the likelihood of a matrix dominated failure mode.