화학공학소재연구정보센터
Journal of Power Sources, Vol.294, 299-304, 2015
Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation
The present work explores the effect of autoclave-based autogenous-pressure vs. ambient pressure conditions on the synthesis and properties of carbon-supported Pt-Rh-Sn nanoparticle electrocatalysts. The Pt-Rh-Sn nanoparticles were characterized by X-ray spectroscopy, electron microscopy and mass spectroscopy and deployed as catalysts for the electrocatalytic ethanol oxidation reaction. Pt-Rh-Sn catalysts precipitated with carbon already present showed narrow particle size distribution around 7 nm, while catalysts supported on carbon after particle formation showed broader size distribution ranging from 8 to 16 nm, similar metal loadings between 40 and 48 wt.% and similar atomic ratios of Pt:Rh:Sn of 30:10:60. The highest ethanol oxidation activity at low overpotentials associated with exceptionally early ethanol oxidation onset potential was observed for ambient-pressure catalysts with the active ternary alloy phase formed in presence of the carbon supports. In contrast, catalysts prepared under ambient pressure in a two-step approach, involving alloy particle formation followed by particle separation and subsequent deposition on the carbon support, yielded the highest overall mass activities. Based on the observed synthesis activity correlations, a comparative assessment is provided of the synthetic techniques at high vs. low pressures, and in presence and absence of carbon support. Plausible hypotheses in terms of particle dispersion and interparticle distance accounting for these observed differences are discussed. (C) 2015 Elsevier B.V. All rights reserved.