화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.20, 6311-6316, 2015
Does Addition of an Electrolyte Influence the Rotational Diffusion of Nondipolar Solutes in a Protic Ionic Liquid?
Rotational diffusion of two structurally similar nondipolar solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), has been examined in ethylammonium nitrate-lithium nitrate (EAN-LiNO3) mixtures to understand the influence of added electrolyte on the local environment experienced by the solute molecules. The measured reorientation times of both DMDPP and DPP in EAN-LiNO3 mixtures fall within the broad limits set by the hydrodynamic slip and stick boundary conditions. The hydrogen bond accepting DMDPP and the hydrogen bond donating DPP experience specific interactions with the cation and anion of the ionic liquid, respectively. Addition of LiNO3 (0.1 and 0.2 mole fraction) to EAN induces only viscosity related effects on the rotational diffusion of the two nondipolar solutes. These observations suggest that the local environment experienced by DMDPP and DPP in EAN is not altered upon the addition of LiNO3. Our results are consistent with the structural details available in the literature for EAN-LiNO3 mixtures.