화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.17, 5437-5443, 2015
Random-Coil Behavior of Chemically Denatured Topologically Knotted Proteins Revealed by Small-Angle X-ray Scattering
Recent studies on the mechanisms by which topologically knotted proteins attain their natively knotted structures have intrigued theoretical and experimental biophysicists. Of particular interest is the finding that YibK and YbeA, two small trefoil knotted proteins, remain topologically knotted in their chemically denatured states. Using small-angle X-ray scattering (SAXS), we examine whether these chemically denatured knotted proteins are different from typical random coils. By revisiting the scaling law of radius of gyration (R-g) as a function of polypeptide chain length for chemically denatured proteins and natively folded proteins, we find that the chemically denatured knotted proteins in fact follow the same random coil-like behavior, suggesting that the formation of topological protein knots do not necessarily require global compaction while the loosely knotted polypeptide chains are capable of maintaining the correct chirality without defined secondary or tertiary structures.