화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.40, 12868-12876, 2015
Fluid and Resistive Tethered Lipid Membranes on Nanoporous Substrates
Cell membranes perform important biological roles including compartmentalization, signaling, and transport of nutrients. Supported lipid membranes mimic the behavior of cell membranes and are an important model tool for studying membrane properties in a controlled laboratory environment. Lipid membranes may be supported on solid substrates; however, protein and lipid interactions with the substrate typically result in their denaturation. In this report, we demonstrate the formation of intact lipid membranes tethered on nanoporous metal thin films obtained via a dealloying process. Uniform lipid membranes were formed when the surface defect density of the nanoporous metal film was significantly reduced through a two-step dealloying process reported here. We show that the tethered lipid membranes on nanoporous metal substrates maintain both fluidity and electrical resistivity, which are key attributes to naturally occurring lipid membranes. The lipid assemblies supported on nanoporous metals provide a new platform for investigating lipid membrane properties, and potentially membrane proteins, for numerous applications including next generation biosensor platforms, targeted drug-delivery, and energy harvesting devices.