화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.119, No.35, 11732-11739, 2015
Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid
Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded rising inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per O-water increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO42- is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4- peaks at similar to 12 M.