Journal of Physical Chemistry A, Vol.119, No.18, 4118-4126, 2015
The Mechanism of Pyrolysis of Benzyl Azide: Spectroscopic Evidence for Benzenemethanimine Formation
We study the gas-phase pyrolysis of benzyl azide (BA, C6H5CH2N3) using ultraviolet photoelectron spectroscopy (UVPES) and matrix-isolation infrared (IR) spectroscopy, together with electronic structure calculations and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. It is found that BA decomposes via N-2 elimination at ca. 615 K, primarily yielding benzenemethaninime. Other end products include HCN and C6H6. N-Methyleneaniline is not detected, although its formation at higher temperature is foreseen by RRKM calculations.