Journal of Materials Science, Vol.51, No.8, 3772-3783, 2016
Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC)
One of the most important factors to determine the mechanical properties of a fibre composite material is the orientation of the fibres in the matrix. This paper presents Hessian matrix-based algorithms to retrieve the orientation of individual fibres out of steel fibre reinforced cementitious composites samples scanned with an X-ray computed tomography scanner. The software implemented with the algorithms includes a massive data filtering component to remove noise from the data-sets and prepare them correctly for the analysis. Due to its short computational times and limited need for user intervention, the software is able to process and analyse large batches of data in short periods and provide results in a variety of visual and numerical formats. The application and comparison of these algorithms lead to further insight into the material behaviour. In contrast to the usual assumption that the fibres act only along their main axis, it is shown that the contribution of hooked-end fibres in other directions may be noticeable. This means that fibres, depending on their shape, should act as orthotropic inclusions. The methods can be used by research laboratories and companies on an everyday basis to obtain fibre orientations from samples, which in turn can be used in research, to study stress-strain behaviour, as input to constitutive models or for quality assurance.