Journal of Hazardous Materials, Vol.304, 490-501, 2016
Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control
Electrocoagulation (EC) is the intentional corrosion of sacrificial anodes (typically aluminum or iron) by passing electricity to release metal-ion coagulant species and destabilize a wide range of suspended, dissolved, and macromolecular contaminants. It can be integrated ahead of microfiltration (MF) to effectively control turbidity, microorganisms, and disinfection by-products (DBPs) and simultaneously maintain a high MF specific flux. This manuscript summarizes the current knowledge on MF pretreatment by aluminum EC particularly focusing on mechanisms of (i) electrocoagulant dosing, (ii) (bio)colloid destabilization, (iii) fouling reductions, and (iv) enhanced removal of viruses, natural organic matter (NOM), and DBP precursors. Electrolysis efficiently removes hydrophobic NOM, viruses, and siliceous foulants. Aluminum effectively electrocoagulates viruses by physically encapsulating them in flocs, neutralizing their surface charge and reducing electrostatic repulsion, and increasing hydrophobic interactions between any sorbed NOM and free viruses. New results included herein demonstrate that EC achieves DBP control " by removing NOM, reducing chlorine-reactivity of remaining NOM, and inducing a slight shift toward more brominated trihalomethanes and haloacetic acids. EC reduces MF fouling by forming large flocs that tend to deposit on the membrane surface, i.e. decrease pore penetration and forming more permeable cakes and by reducing foulant mass in case of significant floc-flotation. (C) 2015 Elsevier B.V. All rights reserved.